Identifying recurrent mutations in population-level sequencing data

Kelsey Johnson SAGES June 1st, 2018

What is a recurrent mutation?

acggaagctag acggaagctag acggaagctag acggaagctag acggacgctag acggacgctag acggaagctag acggaagctag acggaagctag

What is a recurrent mutation?

acggaagctag acggaagctag acggaagctag acggaagctag acggaCgctag acggaCgctag acggaagctag acggaagctag acggaagctag

Identical by descent (IBD):

What is a recurrent mutation?

acggaagctag acggaagctag acggaagctag acggaagctag acggaCgctag acggaCgctag acggaagctag acggaagctag acggaagctag

Why care about recurrent mutations?

Recurrent mutations are a hallmark of some Mendelian diseases

Gene	Disease
CFTR	cystic fibrosis
SCN8A	epileptic encephalopathy
PKD1	polycystic kidney disease
FGFR1	Pfeiffer syndrome
FGFR3	achondroplasia
LMNA	Hutchinson–Gilford progeria syndrome

Recurrent mutations are used to identify genes associated with complex disease

ARTICLE

Received 15 Sep 2014 | Accepted 16 Oct 2014 | Published 24 Nov 2014

DOI: 10.1038/ncomms6595

Recurrent *de novo* mutations implicate novel genes underlying simplex autism risk

B.J. O'Roak^{1,†,*}, H.A. Stessman^{1,*}, E.A. Boyle¹, K.T. Witherspoon¹, B. Martin¹, C. Lee¹, L. Vives¹, C. Baker¹, J.B. Hiatt¹, D.A. Nickerson¹, R. Bernier², J. Shendure¹ & E.E. Eichler^{1,3}

These studies rely on family-based sequencing to identify recurrent mutations

Family-based study

Population-based study

What features can distinguish recurrent and IBD alleles?

Differences in t_{MRCA} for IBD vs. recurrent alleles

Differences in t_{MRCA} for IBD vs. recurrent alleles

Population-level sequencing data with diploid genotypes

1 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 Ο 0 1 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 $\mathbf{0}$ Ω Ω Ο Λ Ω Ω 1 Π 0 0 0 0 1 1 0 0 0 0 0 2 0 0 0 0 Ω Ω Ω 2 0 0 0 0 0 1 0 Ο Ο Ο Ο 1 0 0 0 1 0 2 0 0 0 2 0 0 1 0 2 Ο Ο Ο 0 0 Ο 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 Ω 0 0 0 1 1

0	0	0	0	1	0	0	1	0	0	1	0	0	2	1	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	1
0	1	0	0	2	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0	0	0	1	0	1
0	0	0	0	1	0	0	0	0	0	1	0	0	2	0	0	0	0	0	1	0	0	2	0	0	1	0	0	1	0	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2	0	0	1	0	0	1	0	0
0	0	0	0	0	0	1	0	0	0	1	0	0	2	0	0	0	0	0	1	0	0	1	0	0	1	0	0	1	0	2
0	0	1	0	1	0	0	0	0	0	2	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	1	0	0	0	1	0	0	2	0	0	1	0	0	1	0	2
0	0	0	0	2	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	1

Mathieson & McVean, 2014

If the t_{MRCA} of two alleles is known, the conditional probability distribution of the recombination distance is:

 $f(d_L \mid t_{MRCA})$

If the t_{MRCA} of two alleles is known, the conditional probability distribution of the recombination distance is:

$$f(d_L \mid t_{MRCA})$$

With the probability distribution of the t_{MRCA} for recurrent and IBD alleles, we can calculated the probability of d_1 :

$$f(d_L) = \int_{t_{MRCA}} f(d_L \mid t_{MRCA}) f(t_{MRCA}) dt_{MRCA}$$

Theory vs. data: recurrent mutations

Theory vs. data: IBD mutations 4 **UK10K biallelic 8ton Theoretical IBD 8ton** 3 Densit 5 0 3 **Recombination distance (cM)**

Recombination distances follow a predictable pattern

 C_3

C₃

short t_{MRCA} , long rec. dist. long t_{MRCA} , short rec. dist.

Recombination distances follow a predictable pattern

short t_{MRCA} , long rec. dist. long t_{MRCA} , short rec. dist.

Statistical approach

- Calculate likelihood of observed data under 2 scenarios (IBD or recurrent):
 - Recombination distances on right & left hand sides

Statistical approach

- Calculate likelihood of observed data under 2 scenarios (IBD or recurrent):
 - Recombination distances on right & left hand sides
 - Distance ranks on right & left hand sides

Statistical approach

- Calculate likelihood of observed data under 2 scenarios (IBD or recurrent):
 - Recombination distances on right & left hand sides
 - Distance ranks on right & left hand sides
- Compute test statistic of composite likelihood ratio

Statistic performance depends on allele count

Application to UK10K: CpG enrichment

Application to UK10K: CpG enrichment

What's next?

- Application to empirical datasets (e.g. UK10K)
 - Updated measurement of SFS

What's next?

- Application to empirical datasets (e.g. UK10K)
 - Updated measurement of SFS
 - Mutation rate variation

What's next?

- Application to empirical datasets (e.g. UK10K)
 - Updated measurement of SFS
 - Mutation rate variation

• Rare variant burden tests

Thank you!

Voight Lab

Ben Voight Paul Babb Diana Cousminer Kat Gawronski Kim Lorenz Katie Siewert Chris Thom

Thesis Committee

Casey Brown Maja Bucan Struan Grant Sarah Tishkoff

Funding

Genetics Training Grant T32GM008216

